

Optimization of the Abnormal Beckmann Rearrangement: Application to Steroid 17-Oximes

Cunde Wang,[†] Xin Jiang,[†] Haijian Shi,^{†,‡} Jun Lu,[†] Yuefei Hu,^{*,†,‡,§} and Hongwen Hu[†]

Department of Chemistry, Nanjing University, Nanjing 210093, P. R. China, and Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China

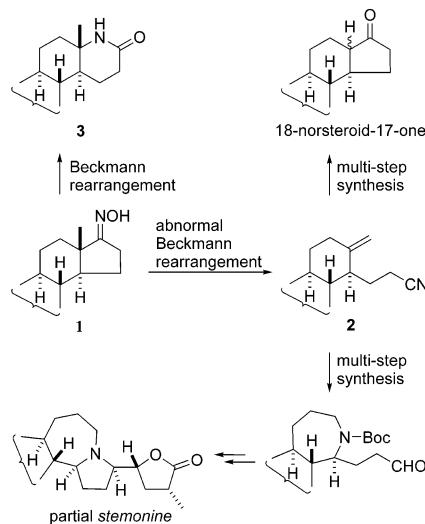
yfh@mail.tsinghua.edu.cn

Received January 31, 2003

Abstract: A novel and practical procedure was developed for the abnormal Beckmann rearrangement of steroid 17-oximes. Treatment of the 17-oximes with TFA/CH(OMe)₃ in boiling THF for 2 h gives the corresponding 13,17-seco alkene nitrile products in unprecedented high yields (70–92%). Since the alkene nitriles can be subsequently converted into 18-norsteroids, this general method provides a highly efficient route to these biologically important compounds and, by extension, to other structurally related natural products.

A number of biologically important properties of steroids are dependent upon structural features of the steroid D-ring. Chemical modification of the angular 18-Me provides a way to alter the functional groups, sizes, and stereochemistry of the D-ring, and numerous structure–activity relationships have been established by such synthetic alterations.¹ In particular, methods for the preparation of the noncommercially available 18-norsteroids have received considerable attention.^{2,3} Prominent among these synthetic methods are those that use an abnormal Beckmann rearrangement of a steroid 17-oxime (**1**) to yield a ring-cleaved alkene nitrile (**2**) product. Recyclization of the alkene-nitrile by a variety of methods yields the 18-norsteroids. However, a major drawback to this otherwise efficient synthetic approach to 18-norsteroids has been the relatively poor yields obtained because of the competing Beckmann rearrangement that leads to lactam **3** (Scheme 1).^{3h–j,4–8}

* To whom correspondence should be addressed. Phone: +86-10-62795380. Fax: +86-10-62771149.


[†] Nanjing University.

[‡] Tsinghua University.

[§] Present Address: Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

(1) For selected recent reports on the modification of angular 18-Me, see: (a) Davioud, E.; Piffeteau, A.; Delorme, C.; Coustal, S.; Marquet, A. *Bioorg. Med. Chem.* **1998**, *6*, 1781–1788. (b) Corey, E. J.; Huang, A. X. *J. Am. Chem. Soc.* **1999**, *121*, 710–714. (c) Schonecker, B.; Lange, C.; Kotteritzsch, M.; Gunther, W.; Weston, J.; Anders, E.; Gorls, H. *J. Org. Chem.* **2000**, *65*, 5487–5497. (d) Anderson, A.; Boyd, A. C.; Clark, J. K.; Fielding, L.; Gemmill, D. K.; Hamilton, N. M.; Maidment, M. S.; May, V.; McGuire, R.; McPhail, P.; Sansbury, F. H.; Sundaram, H.; Taylor, R. *J. Med. Chem.* **2000**, *43*, 4118–4125. (e) Kitamoto, D.; Dieth, S.; Burger, A.; Tritsch, D.; Biellmann, J.-F. *Tetrahedron Lett.* **2001**, *42*, 505–507. (f) Marczak, S.; Przedzicka, A.; Wicha, J.; Stenmeyer, A.; Zugel, U. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 63–66. (g) Hillisch, A.; Boidol, W.; Schwede, W.; Esperling, P.; Sauer, G.; Hegele-Hartung, C.; Kollenkirchen, U.; Fritzemeier, K.-H. PCT Int. Appl. WO 01 32,680 A2; *Chem. Abstr.* **2001**, *134*, 326662h.

SCHEME 1

In our recent research, several analogues of **2** have been designed as key precursors for the preparation of 18-norsteroid-17-ones^{3j} and for the total synthesis of some members of *Stemona* alkaloids (for example, stemonine).⁹ Thus, to overcome the low yields associated with the abnormal Beckmann rearrangement of steroid 17-oximes we undertook this study. We report here reaction conditions that accomplish this goal.

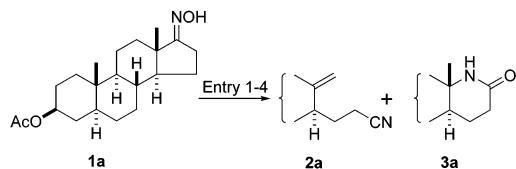
Initially, the published methods were scanned on the model compound **1a**. Reagents and solvents investigated

(2) For selected recent reports on the synthesis of 18-norsteroids, see: (a) Corey, E. J.; Virgil, S. C. *J. Am. Chem. Soc.* **1990**, *112*, 6429–6431. (b) Meyers, A. I.; Elworthy, T. R. *J. Org. Chem.* **1992**, *57*, 4732–4740. (c) Bi, H.; Messe, R.; Just, G. *Steroids* **1992**, *57*, 306–312. (d) Corey, E. J.; Virgil, S. C.; Cheng, H.; Baker, C. H.; Matsuda, S. P. T.; Singh, V.; Sarshar, S. *J. Am. Chem. Soc.* **1995**, *117*, 11819–11820. (e) Corey, E. J.; Daley, D. C.; Cheng, H. *Tetrahedron Lett.* **1996**, *37*, 3287–3290. (f) Shimizu, T.; Ohzeki, T.; Hiramoto, K.; Tori, N.; Nakata, T. *Synthesis* **1999**, *1373–1385*. (g) Faure-Tromeur, M.; Zard, S. Z. *Tetrahedron Lett.* **1999**, *40*, 1305–1308. (h) Miranda, Teerhuis, H.; Huisman, I. A. M.; Groen, M. B. *Tetrahedron Lett.* **2001**, *42*, 2869–2871. (i) Nicoletti, D.; Ghini, A. A.; Baggio, R. F.; Teresa Garland, M.; Burton, G. *J. Chem. Soc., Perkin Trans. 1* **2001**, 1511–1517.

(3) For the synthesis of 18-norsteroid-17-ones, see: (a) Johnson, W. S.; Bannister, B.; Pappo, R. *J. Am. Chem. Soc.* **1956**, *78*, 6331–6339. (b) Johns, W. F. *J. Am. Chem. Soc.* **1958**, *80*, 6456–6457. (c) Stork, G.; Khastgir, H. N.; Solo, A. J. *J. Am. Chem. Soc.* **1958**, *80*, 6457–6458. (d) Yorke, K. V.; Truett, W. L.; Johnson, W. S. *J. Org. Chem.* **1962**, *27*, 4580–4587. (e) Engel, C. R.; Lachance, P.; Capitaine, J.; Zee, J.; Mukherjee, D.; Merand, Y. *J. Org. Chem.* **1983**, *48*, 1954–1966. (f) Ribeiro, O.; Hadfield, S. T.; Clayton, A. F.; Wose, C. W.; Coombs, M. M. *J. Chem. Soc., Perkin Trans. 1* **1983**, 87–91. (g) Davioud, E.; Schambel, P.; Viger, A.; Marquet, A. *Steroids* **1993**, *58*, 141–144. (h) Han, M.; Covey, D. F. *J. Org. Chem.* **1996**, *61*, 7614–7616. (i) Kuhl, A.; Karelle, H.; Kreiser, W. *Helv. Chim. Acta* **1999**, *82*, 30–33. (j) Jiang, X.; Wang, C.; Hu, Y.; Hu, H.; Covey, D. F. *J. Org. Chem.* **2000**, *65*, 3555–3557.

(4) (a) Cohen, K. F.; Kazlauskas, R.; Pinhey, J. T. *J. Chem. Soc., Perkin Trans. 1* **1973**, 2076–2086. (b) Chapman, J. C.; Pinhey, J. T. *Aust. J. Chem.* **1974**, *27*, 2421–2430. (c) Mammato, D. C.; Eadon, G. A. *J. Org. Chem.* **1975**, *40*, 1784–1792.

(5) (a) Fenselau, A. H.; Hamamura, E. H.; Moffatt, J. G. *J. Org. Chem.* **1970**, *35*, 3546–3552. (b) Pfenninger, J.; Graf, W. *Helv. Chim. Acta* **1980**, *63*, 2338–2341.


(6) Schlatter, H.-R.; Graf, W. *Helv. Chim. Acta* **1980**, *63*, 1554–1561.

(7) Nikolalaropoulos, S.; Catsoulacos, P. *J. Heterocycl. Chem.* **1990**, *27*, 1997–1999.

(8) Dolle, R. E.; Allaudeen, H. S.; Kruse, L. I. *J. Med. Chem.* **1990**, *33*, 877–880.

(9) Wang, C. Ph.D. Thesis, Nanjing University, 2002.

SCHEME 2

Entry	Reaction Conditions	Yield of 2a (%)	Yield of 3a (%)
1	TFA/DCC/DMSO/C ₆ H ₆ /rt/3h	49	36
2	TFA/CDI/THF/60-70 °C/2h	70	6
3	TFA/CH(OMe) ₃ /THF/60-70 °C/2h	80	4
4	TFA/CH(OC ₂ H ₅) ₃ /THF/60-70 °C/2h	78	4

TABLE 1. Effect of the Ratio of **1a/TFA/CH(OMe)₃^a**

entry	1a /TFA/CH(OMe) ₃ (mol)	yield of 2a (%)
1	1/1.00/2.75	74
2	1/1.20/2.75	78
3	1/1.25/2.75	80
4	1/1.25/2.25	75
5	1/1.25/3.25	79
6	1/1.50/2.75	80

^a The tests were performed in THF at 65–70 °C for 2 h.

for the reaction were *p*-TsCl–pyridine,⁴ TFA–DCC–DMSO,^{3f,h–j} PCl₅–dioxane,⁶ SOCl₂–dioxane,⁷ and TFAA–CH₂Cl₂.⁸ To our disappointment, none of these reaction conditions minimized the formation of undesirable lactam product and did not give the alkene nitrile product in acceptable yields. The most popularly used reaction medium of TFA–DCC–DMSO–C₆H₆ yielded a mixture of **2a** and **3a** in a ratio of 7:5 and was associated with a tedious workup that made a scale-up of the reaction inconvenient (Scheme 2, entry 1).

Realizing that the mechanism of the abnormal Beckmann rearrangement requires reagents having both acidic and dehydration properties, we initially test a combination of TFA and CDI (1,1'-carbonyldiimidazole) as the reaction medium. In agreement with our expectation, when **1a** was treated with this new reagent system in boiling THF for 2 h, the ratio of products was improved significantly to give the desired **2a** in 70% yield with lactam **3a** in only 6% yield (Scheme 2, entry 2). Furthermore, the replacement of CDI with CH(OMe)₃ achieved an unprecedented high yield for the abnormal Beckmann rearrangement of the steroid 17-oxime. Compound **1a** was converted into **2a** in 80% yield using TFA–CH(OMe)₃–THF with a negligible amount of **3a** (less than 4%). Since the CH(OMe)₃ was converted into HCO₂Me during the reaction, the procedure also facilitated the workup and scale-up of the reaction (Scheme 2, entry 3). As expected, alternation of CH(OMe)₃ by CH(OEt)₃ gave a comparable result (Scheme 2, entry 4).

To optimize the reaction conditions, the effect of the ratio of **1a**/TFA/CH(OMe)₃ and reaction temperature were studied. As shown in Tables 1 and 2, the reaction gives a satisfactory yield in the ratio of 1/1.25/2.75 for 2 h and excessive TFA and CH(OMe)₃ or longer reaction time are not necessary. It was observed that the reaction is quite temperature dependent, and 65–70 °C is recommended. Normally, no reaction occurred below 50 °C and a brown color quickly developed when the reaction temperature was above 70 °C (Table 3).

TABLE 2. Effect of the Reaction Time^a

entry	time (min)	yield of 2a (%)
1	15	42
2	30	63
3	60	76
4	120	80
5	240	81

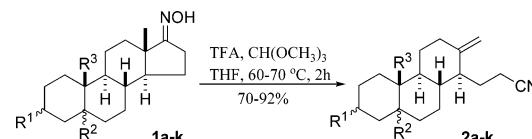

^a The tests were performed under the conditions of entry 4 in Table 1.

TABLE 3. Effect of the Temperature and Solvent^a

entry	<i>T</i> (°C)	solvent	yield of 2a (%)
1	<50	THF	0
2	60–70	THF	80
3	70–80	C ₆ H ₆	78
4	100–105	CH(OMe) ₃	79 ^b

^a The tests were performed under the conditions of entry 4 in Table 1 for 2 h. ^b Deep brown color.

SCHEME 3

TABLE 4. Abnormal Beckmann Rearrangement of Steroid-17-one Oximes

1, 2	R ¹	R ²	R ³	yield of 2 (%)
a	β-OAc	α-H	Me	80
b	β-OBz	β-H	Me	88
c	β-OAc	Δ ⁵⁽⁶⁾	Me	70
d	α-OAc	α-H	Me	88
e	α-OAc	β-H	Me	79
f	α-OBz	α-H	Me	92
g	β-OAc	α-H	H	90
h	β-OAc	β-H	H	74
i	α-OBz	α-H	H	84
j	α-OAc	β-H	H	77
k	OMe	Δ ^{1,3,5(10)} -triene		84

Under very similar conditions, the other steroid 17-oximes **1b–k** underwent the abnormal Beckmann rearrangement to yield corresponding alkene nitriles **2b–k** in 70–92%. As illustrated in Scheme 3 and Table 4, this method is quite general and the yields of **2a–k** were not significantly affected by substituents or stereochemistry at C-3, C-5, and C-10.

In summary, a novel and practical procedure was developed for the abnormal Beckmann rearrangement of steroid 17-oximes. When compounds (**1a–k**) were treated with TFA/CH(OMe)₃ in boiling THF for 2 h, the corresponding 13,17-seco alkene nitriles (**2a–k**) were obtained in 70–92% yields. This general method provides high yield access to alkene nitrile compounds which are key intermediates for the preparation of some biologically important 18-norsteroids and structurally related natural products.

Experimental Section

The ¹H NMR spectra were recorded on a Bruker ACF-300 spectrometer with TMS as internal reference. The MS spectra were obtained on a ZAB-HS mass spectrometer with 70 eV. Optical rotations were determined on a Perkin-Elmer 343 polarimeter.

General Procedure for the Abnormal Beckmann Rearrangement of Steroid-17-one Oximes (1a–k) Promoted by TFA–CH(OMe)₃–THF. To a stirred solution of steroid-17-one oxime (1, 10 mmol) and CH(OMe)₃ (2.9 g, 27.5 mmol) in anhydrous THF (35 mL) under N₂ at 60 °C was added freshly distilled TFA (1.43 g, 12.5 mmol) in one portion. The mixture was then brought to reflux for 2 h, and compound 1 disappeared completely (monitored by TLC). After most of the THF was removed in a vacuum, CH₂Cl₂ and 10% aqueous solution of Na₂CO₃ were added, respectively. The organic layer was separated, washed with H₂O, and dried over MgSO₄. Removal of the solvent to give the crude product, which was purified by chromatography [silica gel, 15% EtOAc in petroleum ether (60–90°)] to give the desired product 2 (Table 4).

17-Cyano-13,17-seco-5 α -androst-13(18)-en-3 β -yl acetate (2a): white crystals; mp 98–99 °C (AcOEt/petroleum ether, lit.^{4b} mp 98–99 °C); $[\alpha]^{20}_D = -39.16$ (*c* 0.33, CHCl₃); IR ν 2220, 1725, 1650 cm⁻¹; ¹H NMR δ 4.79 (s, 1H), 4.70 (m, 1H), 4.47 (s, 1H), 2.04 (s, 3H), 0.75 (s, 3H); MS *m/z* 329 (M⁺, 10), 43 (100). Anal. Calcd for C₂₁H₃₁NO₂: C, 76.55; H, 9.48; N, 4.25. Found: C, 76.28; H, 9.32; N, 4.20.

17-Cyano-13,17-seco-5 β -androst-13(18)-en-3 β -yl benzoate (2b): white crystals; mp 109–110 °C (AcOEt/petroleum ether); $[\alpha]^{20}_D = -3.65$ (*c* 1.30, CHCl₃); IR ν 2220, 1730, 1640 cm⁻¹; ¹H NMR δ 8.07 (d, *J* = 7.3 Hz, 2H), 7.56 (t, *J* = 7.3 Hz, 1.4 Hz, 1H), 7.46 (t, *J* = 7.2 Hz, 1.3 Hz, 2H), 5.37 (s, 1H), 4.80 (s, 1H), 4.49 (s, 1H), 0.78 (s, 3H); MS *m/z* 391 (M⁺, 0.15), 105 (100). Anal. Calcd for C₂₆H₃₃NO₂: C, 79.76; H, 8.49; N, 3.58. Found: C, 79.71; H, 8.46; N, 3.62.

17-Cyano-13,17-seco-androst-5(6),13(18)-dien-3 β -yl acetate (2c): white crystals; mp 104–105 °C (AcOEt/petroleum ether, lit.^{5a} mp 104–106 °C); $[\alpha]^{20}_D = -149.75$ (*c* 0.80, CHCl₃); IR ν 2250, 1715, 1645 cm⁻¹; ¹H NMR δ 5.39 (t, *J* = 2.4 Hz, 2.3 Hz, 1H), 4.84 (s, 1H), 4.61 (m, 1H), 4.51 (s, 1H), 2.05 (s, 3H), 0.94 (s, 3H); MS *m/z* 328 (M + 1, 22), 327 (M⁺, 100). Anal. Calcd for C₂₁H₂₉NO₂: C, 77.02; H, 8.93; N, 4.28. Found: C, 76.98; H, 8.90; N, 4.27.

17-Cyano-13,17-seco-5 α -androst-13(18)-en-3 α -yl acetate (2d): white crystals; mp 89–91 °C (AcOEt/petroleum ether); $[\alpha]^{20}_D = -45.07$ (*c* 0.50, CHCl₃); IR ν 2225, 1720, 1640 cm⁻¹; ¹H NMR δ 4.80 (s, 1H), 4.72 (m, 1H), 4.48 (s, 1H), 2.04 (s, 3H), 0.76 (s, 3H); MS *m/z* 329 (M⁺, 12), 85 (100). Anal. Calcd for C₂₁H₃₁NO₂: C, 76.55; H, 9.48; N, 4.25. Found: C, 76.24; H, 9.30; N, 4.22.

17-Cyano-13,17-seco-5 β -androst-13(18)-en-3 α -yl acetate (2e): white crystals; mp 88–90 °C (AcOEt/petroleum ether); $[\alpha]^{20}_D = -6.22$ (*c* 3.04, CHCl₃); IR ν 2225, 1730, 1640 cm⁻¹; ¹H NMR δ 4.79 (s, 1H), 4.75 (m, 1H), 4.46 (s, 1H), 2.04 (s, 3H), 0.84 (s, 3H); MS *m/z* 329 (M⁺, 4), 43 (100). Anal. Calcd for C₂₁H₃₁NO₂: C, 76.55; H, 9.48; N, 4.25. Found: C, 76.54; H, 9.28; N, 4.19.

17-Cyano-13,17-seco-5 α -androst-13(18)-en-3 α -yl benzoate (2f): white crystals; mp 126–127 °C (AcOEt/petroleum ether); $[\alpha]^{20}_D = -37.28$ (*c* 0.45, CHCl₃); IR ν 2215, 1720, 1641 cm⁻¹; ¹H NMR δ 8.07 (d, *J* = 7.3 Hz, 2H), 7.58 (t, *J* = 7.3 Hz, 1.2 Hz, 1H), 7.48 (t, *J* = 7.2 Hz, 1.4 Hz, 2H), 5.29 (s, 1H), 4.80 (s, 1H), 4.48 (s, 1H), 0.78 (s, 3H); MS *m/z* 391 (M⁺, 2), 166 (100). Anal. Calcd for C₂₆H₃₃NO₂: C, 79.76; H, 8.49; N, 3.58. Found: C, 79.70; H, 8.44; N, 3.50.

17-Cyano-13,17-seco-5 α -estr-13(18)-en-3 β -yl acetate (2g): white crystals; mp 98–99 °C (AcOEt/petroleum ether); $[\alpha]^{20}_D = -20.83$ (*c* 0.36, CHCl₃); IR ν 2225, 1730, 1640 cm⁻¹; ¹H NMR δ 4.81 (s, 1H), 4.72 (m, 1H), 4.49 (s, 1H), 2.03 (s, 3H); MS *m/z* 315 (M⁺, 9), 43 (100). Anal. Calcd for C₂₀H₂₉NO₂: C, 76.15; H, 9.27; N, 4.44. Found: C, 76.12; H, 9.22; N, 4.36.

17-Cyano-13,17-seco-5 β -estr-13(18)-en-3 β -yl acetate (2h): white crystals; mp 158–160 °C (AcOEt/petroleum ether); $[\alpha]^{20}_D = -13.95$ (*c* 0.13, CHCl₃); IR ν 2210, 1715, 1620 cm⁻¹; ¹H NMR δ 5.10 (m, 1H), 4.81 (s, 1H), 4.49 (s, 1H), 2.06 (s, 3H); MS *m/z* 315 (M⁺, 2), 43 (100). Anal. Calcd for C₂₀H₂₉NO₂: C, 76.15; H, 9.27; N, 4.44. Found: C, 76.08; H, 9.20; N, 4.38.

17-Cyano-13,17-seco-5 α -estr-13(18)-en-3 α -yl benzoate (2i): white crystals; mp 128–130 °C (AcOEt/petroleum ether); $[\alpha]^{20}_D = -2.28$ (*c* 0.44, CHCl₃); IR ν 2225, 1730, 1650 cm⁻¹; ¹H NMR δ 8.07 (d, *J* = 7.2 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1.3 Hz, 1H), 7.46 (t, *J* = 7.2 Hz, 1.4 Hz, 2H), 5.32 (s, 1H), 4.82 (s, 1H), 4.50 (s, 1H); MS *m/z* 377 (M⁺, 2), 105 (100). Anal. Calcd for C₂₅H₃₁NO₂: C, 79.76; H, 8.49; N, 3.58. Found: C, 79.77; H, 8.45; N, 3.50.

17-Cyano-13,17-seco-5 β -estr-13(18)-en-3 α -yl acetate (2j): white crystals; mp 89–90 °C (AcOEt/petroleum ether); $[\alpha]^{20}_D = +10.97$ (*c* 0.95, CHCl₃); IR ν 2210, 1720, 1610 cm⁻¹; ¹H NMR δ 4.81 (s, 1H), 4.76 (m, 1H), 4.49 (s, 1H), 2.05 (s, 3H); MS *m/z* 315 (M⁺, 12), 43 (100). Anal. Calcd for C₂₀H₂₉NO₂: C, 76.15; H, 9.27; N, 4.44. Found: C, 76.10; H, 9.21; N, 4.38.

3-Methoxy-13,17-seco-estr-1,3,5(10),13(18)-tetraene-17-nitrile (2k):^{5a} colorless oil; $[\alpha]^{20}_D = +54.00$ (*c* 0.20, CHCl₃); IR ν 2200, 1610, 1500 cm⁻¹; ¹H NMR δ 7.22 (d, *J* = 8.6 Hz, 1H), 6.75 (m, 1H), 6.65 (d, *J* = 2.7 Hz, 1H), 4.88 (s, 1H), 4.58 (s, 1H), 3.76 (s, 3H); MS *m/z* 281 (M⁺, 43), 161 (100). Anal. Calcd for C₁₉H₂₃NO: C, 81.10; H, 8.24; N, 4.98. Found: C, 81.00; H, 8.23; N, 4.88.

Acknowledgment. We are grateful to the National Natural Science Foundation of China and the Education Ministry of China for financial support.

JO034142Y